British Columbia is expected to experience more warming than the global average [70,71]. Even though air temperature is moderated by the ocean, air temperatures are projected to increase by 1.8°C by the 2050s and 2.7°C by the 2080s, and could reach of 3-5⁰C by the end of the 21st century if emissions continue at current rates [70–72]. On average, air temperatures are likely to increase by 0.1-0.6⁰C per decade [73].
The summer growing season is projected to lengthen and frost-free days to increase by 20-30 days by 2050-2080 [73] (see MaPP region Summary Table). Winter minimum temperatures across BC may increase by 4-9°C by 2080, and summer maximum temperatures may increase by 3-4°C [70,73].
Across the MaPP region, increasing intensity and frequency of storms is likely to increase inundation risk (flooding) and erosion risk to marine infrastructure, especially for low lying communities [109]. Properties along the coast also will experience increased risk of wave damage, which is associated with coastal erosion. It is highly likely that climate changes, especially during El Niño events, will lead to high coastal erosion across the entire eastern Pacific region [109].
Extreme weather events are expected to create disruptions to marine transportation lanes, potentially lead to wave and wind damage to infrastructure and utilities, and reduce access to critical services [110]. Extreme precipitation events in particular may damage fixed coastal infrastructure such as airports (e.g. Sandspit Airport on Haida Gwaii), and ports (e.g. Port of Prince Rupert), and well as affect marine transportation lanes [74,110]. Overall, climate-related impacts to marine infrastructure are likely to be higher than anticipated, as many communities in coastal BC already have infrastructure deficits that will require increased investment [91,103]. Future winter and spring sea surface height (SSH) levels are also projected to be consistently higher, which will further exacerbate the flooding impacts of sea level rise [21]. Large peak flows and storms can interrupt delivery of goods such as fuel and food to remote places. On the other hand, climate change may also offer some opportunities for the marine transportation sector: longer construction seasons and reduced winter maintenance could reduce costs and increase annual operating budgets. In the longer term, increased sea levels may mean that vessels with deeper draughts will be able to enter existing ports, perhaps an opportunity for marine shipping [110].
Changes in wind and wave patterns may interact with other climate change projections such as sea level rise, but the projections of future winds and storm events are highly uncertain [36]. Storm intensities in the North Pacific increased during 1940-1998, and storm surge related winds and storms may become more frequent and intense as air and ocean temperatures increase [44,85].
Ocean salinity is declining globally, along the BC coast, and within the MaPP region [82]. Freshwater discharge from glaciers is a significant contributor to the nearshore waters of BC. Coastal runoff contributes to maintaining the salinity levels along the coast, driven by glaciers, as well as watersheds driven by fall and winter seasonal precipitation. Large river systems (Fraser River, Naas River, Skeena River) also drain large watersheds and experience pronounced spring freshets. Coastal salinity levels are controlled mainly by these processes at the local scale rather than large-scale climate changes [55]. Salinity effects also influence total sea level rise through ocean expansion through global ocean warming [32,83,84].
Ocean oxygen concentrations have been declining in both pelagic (open ocean) and coastal waters for at least the past half-century [81]. Oxygen minimum zones in the open ocean have increased in area, and some coastal areas have low enough oxygen concentrations that marine species distributions and abundances have been affected [81]. Oxygen levels are likely to continue to decline in the northeast Pacific ocean, and coastal shelf and slope marine ecosystems are likely to lose well oxygenated habitats [57]. Seafloor habitats in the North Pacific could experience a reduction of 0.7-3.7% in oxygen levels by 2100 [54].
Ocean acidification is occurring faster as higher latitude areas, due to the effects of temperature on carbon dioxide absorption [76–78]). Globally, ocean acidification is projected to increase by 100% or more by 2100, but there is large uncertainty and variation among regions and climate scenarios [32,52,79]. Within the MaPP region, acidification is projected to continue to increase as carbon dioxide emissions continue to rise. Average pH levels could decline to between 7.69-7.96 (RCP8.5 and RCP2.6, respectively) by 2091-2100 [32,80].
Warming ocean temperatures will affect ecosystems and species across the world and within this region. In BC, sea surface temperatures are likely to increase by between 0.5°C to 2.0°C by the end of the century (2065-2078, relative to a 1995-2008 baseline) ([21]; see MaPP Regional Table; Maps). The rate of ocean temperature increase may accelerate, as consistent with the accelerating rise in global sea surface temperatures [14,75].
Share our research
Written by Charlotte K. Whitney and Tugce Conger
Whitney, Charlotte, and Tugce Conger. 2019. “Northern Shelf Bioregion Climate Change Assessment: Projected Climate Changes, Sectoral Impacts, and Recommendations for Adaptation Strategies Across the Canadian North Pacific Coast.”
Written by Charlotte K. Whitney, Tugce Conger, Natalie C. Ban, and Romney McPhie
Charlotte K. Whitney, Tugce Conger, Natalie C. Ban, Romney McPhie, and Steven J. Cooke. Synthesizing and communicating climate change impacts to inform coastal adaptation planning. FACETS. 5(1): 704-737. https://doi.org/10.1139/facets-2019-0027