A cluster of red strawberry anenome with clear tendrils sticking out from their circular centers.


[1] IPCC, Summary for Policymakers In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V, 2014. doi:10.1016/j.renene.2009.11.012.

[2] PNCIMA, Pacific North Coast Integrated Management Area Plan, (2013) 78.

[3] DFO, Development of a framework and principles for the biogeological classification of Canadian marine areas, DFO Can Sci Adv Secr Sci Advis Rep 2010/030. (2009).

[4] P. Cummins, R. Haigh, Ecosystem Status and Trends Report for North Coast and Hecate Strait ecozone, DFO Can. Sci. Advis. Sec. Res. Doc. 2010/045. (2010) 61.

[5] T.A. Okey, H.M. Alidina, V. Lo, S. Jessen, Effects of climate change on Canada’ s Pacific marine ecosystems: A summary of scientific knowledge, Rev. Fish Biol. Fish. 24 (2014) 519–559. doi:10.1007/s11160-014-9342-1.

[6] T.A. Okey, H.M. Alidina, V. Lo, A. Montenegro, S. Jessen, Climate Change Impacts and Vulnerabilities in Canada’s Pacific Marine Ecosystems, Vancouver, BC, 2012.

[7] S.W. Fleming, P.H. Whitfield, S.W. Fleming, P.H. Whitfield, Spatiotemporal mapping of ENSO and PDO surface meteorological signals in British Columbia , Yukon , and southeast Alaska Spatiotemporal Mapping of ENSO and PDO Surface Meteorological Signals in British Columbia , Yukon , and Southeast Alaska, 5900 (2017). doi:10.3137/AO1107.2010.

[8] M. Newman, M.A. Alexander, T.R. Ault, K.M. Cobb, C. Deser, E. Di Lorenzo, et al., The Pacific Decadal Oscillation, revisited, Bull. Amer. Meteor. Soc. (2015) 1–63. doi:10.1023/A:1015820616384.

[9] BCME, Environmental Trends in British Columbia: 2007, 2007. www.env.gov.bc.ca/soe/.

[10] BCME, Indicators of Climate Change for British Columbia, 2016.

[11] P.C. Chandler, S.A. King, J.B. Editors, State of the Physical , Biological and Selected Fishery Resources of Pacific Canadian Marine Ecosystems in 2016 Canadian Technical Report of Fisheries and Aquatic Sciences 3225, 2017.

[12] W.W.L. Cheung, R.D. Brodeur, T.A. Okey, D. Pauly, Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas, Prog. Oceanogr. 130 (2015) 19–31. doi:10.1016/j.pocean.2014.09.003.

[13] N.A. Bond, M.F. Cronin, H. Freeland, N. Mantua, Causes and impacts of the 2014 warm anomaly in the NE Pacific, Geophys. Res. Lett. 42 (2015) 3414–3420. doi:10.1002/2015GL063306.

[14] T.A. Okey, H.M. Alidina, V. Lo, S. Jessen, Effects of climate change on Canada’ s Pacific marine ecosystems: a summary of scientific knowledge, Rev. Fish Biol. Fish. 24 (2014) 519–559. doi:10.1007/s11160-014-9342-1.

[15] T.A. Okey, H. Alidina, S. Agbayani, Mapping ecological vulnerability to recent climate change in Canada ’ s Pacific marine ecosystems, Ocean Coast. Manag. 106 (2015) 35–48. doi:10.1016/j.ocecoaman.2015.01.009.

[16] C. Clarke Murray, S. Agbayani, N.C. Ban, Cumulative effects of planned industrial development and climate change on marine ecosystems, Glob. Ecol. Conserv. 4 (2015) 110–116. doi:10.1016/j.gecco.2015.06.003.

[17] C.H. Ainsworth, J.F. Samhouri, D.S. Busch, W.W.L. Cheung, J. Dunne, T. a. Okey, Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries, ICES J. Mar. Sci. 68 (2011) 1217–1229. doi:10.1093/icesjms/fsr043.

[18] A. CH, P. TJ, H. JJ, M. Vasconcellos, Reconstructing historical marine ecosystems using food web models: Northern British Columbia from pre-European contact to present, Ecol. Modell. 216 (2008) 354–368. doi:10.1016/j.ecolmodel.2008.05.005.

[19] S. Guénette, J. Alder, Lessons from Marine Protected Areas and Integrated Ocean Management Initiatives in Canada, Coast. Manag. 35 (2007) 51–78. doi:10.1080/10.1080/08920750600970578.

[20] A. C, H. JJ, P. TJ, V. M, Ecosystem models of northern British Columbia for the time periods 2000, 1950, 1900 and 1750., Univ B C Fish Cent Res Rep. 10 (2002) 1–41.

[21] M.G.G. Foreman, W. Callendar, D. Masson, J. Morrison, I. Fine, W. Callendar, et al., A Model Simulation of Future Oceanic Conditions along the British Columbia Continental Shelf, Atmosphere-Ocean. 0 (2014) 1–19. doi:10.1080/07055900.2013.873014.

[22] J.R. Christian, M.G.G. Foreman, Climate Trends and Projections for the Pacific Large Aquatic Basin, 2013.

[23] B. Biffard, D., Stevens, T., Rao, A., Woods, BC Parks Shoreline Sensitivity Model, 2014.

[24] E. Canada, The Canada Country Study, 1998.

[25] I.J. Walker, R. Sydneysmith, Chapter 8: British Columbia, in: D.S. Lemmen, F.J. Warren, J. Lacroix, E. Bush (Eds.), From Impacts to Adapt. Canada a Chang. Clim., Government of Canada, Ottawa, ON, 2008: pp. 329–386.

[26] F.J. Warren, Climate Change Impacts and Adaptation: A Canadian Perspective, 2004. adaptation.nrcan.gc.ca.

[27] D.S. Lemmen, F.J. Warren, T.S. James, E. Mercer Clarke, C.S.l., Canada’s Marine Coasts in a Changing Climate, Government of Canada, Ottawa, ON, 2016.

[28] F.. Warren, E. Lemmen, D.S., Canada in a Changing Climate: Sector perspectives on Impacts and Adaptation, Ottawa, ON, 2014.

[29] K. Hunter, J. Wade, Pacific Large Aquatic Basin Climate Change Impacts, Vulnerabilities and Opportunities Assessment – Marine Species and Aquaculture., Fish. Ocean. Canada. (2015).

[30] ACCASP, Aquatic Climate Change Adaptation Services Program, (2017). http://www.dfo-mpo.gc.ca/science/rp-pr/accasp-psaccma/projects-projets/022-eng.html. (accessed October 27, 2017).

[31] J.M. Kershner, R.M. Gregg, K. Feifel, Climate change vulnerability maps for the North Pacific coast of British Columbia: Implications for coastal and marine spatial planning, Bainbridge Island, WA, 2014.

[32] IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 2013., Cambridge, UK, and New York, 2013.

[33] B. Ekwurzel, J. Boneham, M.W. Dalton, The rise in global atmospheric CO2 , surface temperature, and sea level from emissions traced to major carbon producers, Clim. C. (2017). doi:10.1007/s10584-017-1978-0.

[34] Long-Term Warming Trend Continued in 2017: NASA, NOAA, (2018). https://www.nasa.gov/press-release/long-term-warming-trend-continued-in-2017-nasa-noaa.

[35] NOAA, Climate at a Glance: Global Time Series, (2017).

[36] IPCC, Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland, n.d.

[37] J.E. Cohen, C. Small, A. Mellinger, J. Gallup, J. Sachs, Estimates of Coastal Populations, Science (80-. ). 278 (1997) 1209 LP-1213. http://science.sciencemag.org/content/278/5341/1209.4.abstract.

[38] T.Q. Murdock, D.L. Spittlehouse, Selecting and using climate change scenarios for British Columbia, Pacific Clim. Impacts Consort. (2011) 39.

[39] S.R. Sobie, T.Q. Murdock, High-Resolution Statistical Downscaling in Southwestern British Columbia, J. Appl. Meteorol. Climatol. 56 (2017) 1625–1641. doi:10.1175/JAMC-D-16-0287.1.

[40] T.A. Okey, H.M. Alidina, V. Lo, S. Jessen, Effects of climate change on Canada’s Pacific marine ecosystems: a summary of scientific knowledge, Rev. Fish Biol. Fish. 24 (2014) 519–559. doi:10.1007/s11160-014-9342-1.

[41] D.R. Rodenhuis, K.E. Bennet, A.T. Werner, T.Q. Murdock, D. Bronaugh, Hydro-climatology and future climate impacts in British Columbia, in: Pacific Clim. Impacts Consortium, Univ. Victoria, Victoria BC, n.d.: p. 132 pp.

[42] PCIC, Climate Summary for: West Coast Region., 2013. https://www.pacificclimate.org/sites/default/files/publications/Climate_Summary-West_Coast.pdf.

[43] N. Vadeboncoeur, Perspectives on Canada’s West Coast region, in: D.S. Lemmen, F.J. Warren, T.S. James, C.S.L. Mercer Clarke (Eds.), Canada’s Mar. Coasts a Chang. Clim., Government of Canada, Ottawa, ON, 2016: pp. 207–252.

[44] R.E. Thomson, Bornhold, B.D., S. Mazzotti, An examination of the factors affecting relative and absolute sea level in coastal British Columbia, Can. Tech. Rep. Hydrogr. Ocean Sci. 260 (2008) 49.

[45] E. DiLorenzo, N. Mantua, Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Climate Change, Nat. Clim. Chang. (2016). doi:10.1038/ nclimate3082.

[46] C.L. Sabine, R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, et al., The Oceanic Sink for Anthropogenic CO2, Science (80-. ). 305 (2004) 367–372.

[47] K. Caldeira, M.E. Wickett, Anthropogenic carbon and ocean pH, Nature. 425 (2003) 365.

[48] K. Caldeira, M.E. Wickett, Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean, J. Geophys. Res. 110 (2005) 1–12. doi:10.1029/2004JC002671.

[49] R.A. Feely, S.R. Alin, J. Newton, C.L. Sabine, M. Warner, A. Devol, et al., The combined effects of ocean acidification , mixing, and respiration on pH and carbonate saturation in an urbanized estuary, Estuar. Coast. Shelf Sci. 88 (2010) 442–449. doi:10.1016/j.ecss.2010.05.004.

[50] C.E. Cornwall, T.D. Eddy, Effects of Near-Future Ocean Acidification, Fishing, and Marine Protection on a Temperate Coastal Ecosystem., Conserv. Biol. 0 (2014) 1–9. doi:10.1111/cobi.12394.

[51] F. Chan, J.A. Barth, C.A. Bl, R.H. Byrne, F. C, O. Cheriton, Persistent spatial structuring of coastal ocean acidification in the California Current System, Sci. Rep. (2017) 1–7. doi:10.1038/s41598-017-02777-y.

[52] R. Haigh, D. Ianson, C.A. Holt, H.E. Neate, A.M. Edwards, Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific, PLoS One. 10 (2015) e0117533. doi:10.1371/journal.pone.0117533.

[53] C. Ito, T., Minobe, S., Long, M. C. and Deutsch, Upper ocean O2 trends: 1958–2015., Geophys. Res. Lett. 44 (2017).

[54] A.K. Sweetman, A.R. Thurber, C.R. Smith, L.A. Levin, C. Mora, C. Wei, et al., Major impacts of climate change on deep-sea benthic ecosystems, (2017).

[55] P.F. Cummins, D. Masson, Climatic variability and trends in the surface waters of coastal British Columbia, Prog. Oceanogr. 120 (2014) 279–290. doi:10.1016/j.pocean.2013.10.002.

[56] G. a McFarlane, J.R. King, R.J. Beamish, Have there been recent changes in climate? Ask the fish, Prog. Oceanogr. 47 (2000) 147–169. doi:10.1016/S0079-6611(00)00034-3.

[57] F.A. Whitney, H.J. Freeland, M. Robert, Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific, Prog. Oceanogr. 75 (2007) 179–199. doi:10.1016/j.pocean.2007.08.007.

[58] R.I. Perry, A. Peña, BC CDC, in: Mar. Biotoxin Work. Oct. 2016, North Vancouver, 2016.

[59] F.A. Whitney, Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific, Geophys. Res. Lett. 2014 (2015) 428–431. doi:10.1002/2014GL062634.Received.

[60] M. Galbraith, K. Young, Zooplankton along the B.C. continental margin 2016., in: P.C. Chandler, S.A. King, J. Boldt (Eds.), State Phys. Biol. Sel. Fish. Resour. Pacific Can. Mar. Ecosyst. 2016. Can. Tech. Rep. Fish. Aquat. Sci. 3225., 2017.

[61] D. Ianson, S. Allen, B. Moore-maley, R. Haigh, S. Johannessen, The vulnerability of the Strait of Georgia (Canada) to future hypoxia and ocean acidification, Geophys. Res. Abstr. 18 (2016) EGU2016-12687.

[62] D. Ianson, S.E. Allen, B.L. Moore-maley, S.C. Johannessen, R.W. Macdonald, Vulnerability of a semienclosed estuarine sea to ocean acidification in contrast with hypoxia, (2016). doi:10.1002/2016GL068996.Abstract.

[63] K.L. Hunter, A.R.S. Ross, D. Ianson, L.A. Miller, C.M. Pearce, J.R. Christian, et al., Pacific Ocean Acidification Working Group – 2014 / 2015 Report Canadian Manuscript Report of Fisheries and Aquatic Sciences 3070, (2015).

[64] S.C.H. Grant, C.G.J. Michielsens, B.L. MacDonald, Fraser River Sockeye: abundance and productivity trends., in: P.C. Chandler, S.A. King, J. Boldt (Eds.), State Phys. Biol. Sel. Fish. Resour. Pacific Can. Mar. Ecosyst. 2016. Can. Tech. Rep. Fish. Aquat. Sci. 3225., 2017.

[65] I. Semeniuk, Sockeye salmon recommended for listing under Species At Risk Act, Globe Mail. (2017). https://www.theglobeandmail.com/news/national/sockeye-salmon-recommended-for-listing-under-species-at-risk-act/article37178682/.

[66] F.A. Whitney, Are central coast sockeye affected by glacial retreat?, in: P.C. Chandler, S.A. King, J. Boldt (Eds.), State Phys. Biol. Sel. Fish. Resour. Pacific Can. Mar. Ecosyst. 2016, S. Can. Te, 2017.

[67] N.J. Turner, H. Clifton, “It’s so different today”: Climate change and indigenous lifeways in British Columbia, Canada, Glob. Environ. Chang. 19 (2009) 180–190. doi:10.1016/j.gloenvcha.2009.01.005.

[68] R.F.M. Sales, Vulnerability and adaptation of coastal communities to climate variability and sea-level rise: Their implications for integrated coastal management in Cavite City, Philippines, Ocean Coast. Manag. 52 (2009) 395–404. doi:10.1016/j.ocecoaman.2009.04.007.

[69] A.I.J. Walker, J. V Barrie, I.J. Walkerf, J. V Barriej, Geomorphology and Sea-level Rise on one of Canada’ s Most Sensitive Coasts: Northeast Graham Island , British Columbia, J. Coast. Res. III (2006) 220–226.

[70] R.G. Pike, D.L. Spittlehouse, K.E. Bennett, V.N. Egginton, P.J. Tschaplinski, T.Q. Murdock, et al., Climate change and watershed hydrology: Part I – recent and projected changes in British Columbia, Streamline Water Manag. Bull. 11 (2008) 1–7.

[71] D.L. Spittlehouse, Climate change, impacts, and adaptation scenarios: climate change and forest and range management in British Columbia, B.C. Tech. Rep. 45 (2008). http://www.for.gov.bc.ca/hfd/pubs/Docs/Tr/Tr045.htm.

[72] P.W. Mote, E.P. Salathé, Future climate in the Pacific Northwest, Clim. Change. 102 (2010) 29–50. doi:10.1007/s10584-010-9848-z.

[73] PCIC, Plan2Adapt: Summary of Climate Change for British Columbia 2050s & 2080s, PCIC. (2013). https://pacificclimate.org/analysis-tools/plan2adapt (accessed December 1, 2017).

[74] D. Nyland, J.R. Nodelman, British Columbia, in: K. Palko, D.S. Lemmen (Eds.), Clim. Risks Adapt. Pract. Can. Transp. Sect. 2016, Government of Canada, Ottawa, ON, 2017: pp. 66–103.

[75] R.J.T. Klein, G.F. Midgley, B.L. Preston, M. Alam, F.G.H. Berkhout, K. Dow, et al., Adaptation Opportunities, Constraints, and Limits, in: Clim. Chang. 2014 Impacts, Adapt. Vulnerability. Part A Glob. Sect. Asp. Contrib. Work. Gr. II to Fifth Assess. Rep. Intergov. Panel Clim. Chang. [Field, C.B., V.R. Barros, D.J. Dokken, K.J., 2014: pp. 899–943.

[76] L.R. Gerber, M. Del Mark Mancha-Cisneros, M. O’Connor, E.R. Selig, Climate change impacts on connectivity in the ocean: Implications for conservation, Ecosphere. 5 (2014) 1–18. doi:10.1890/ES13-00336.1.

[77] S.C. Doney, M. Ruckelshaus, J. Emmett Duffy, J.P. Barry, F. Chan, C. a. English, et al., Climate Change Impacts on Marine Ecosystems, Ann. Rev. Mar. Sci. 4 (2012) 11–37. doi:10.1146/annurev-marine-041911-111611.

[78] R.H. Byrne, S. Mecking, R.A. Feely, X. Liu, Direct observations of basin-wide acidification of the North Pacific Ocean, Geophys. Res. Lett. 37 (2010) 1–5. doi:10.1029/2009GL040999.

[79] L. V. Weatherdon, A.K. Magnan, A.D. Rogers, U.R. Sumaila, W.W.L. Cheung, Observed and Projected Impacts of Climate Change on Marine Fisheries, Aquaculture, Coastal Tourism, and Human Health: An Update, Front. Mar. Sci. 3 (2016) 48. doi:10.3389/fmars.2016.00048.

[80] E.C. Canadian Centre for Climate Modelling and Analysis, IPCC WG5 Ocean chemistry, (2013). https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis.html

[81] D. Breitburg, L.A. Levin, A. Oschlies, M. Grégoire, F.P. Chavez, D.J. Conley, et al., Declining oxygen in the global ocean and coastal waters, Science (80-. ). 359 (2018) eaam7240. doi:10.1126/science.aam7240.

[82] P. Chandler, Sea surface temperature and salinity trends observed at lighthouses and weather buoys in British Columbia, 2016., in: P.C. Chandler, S.A. King, J. Boldt (Eds.), State Phys. Biol. Sel. Fish. Resour. Pacific Can. Mar. Ecosyst. 2016, 2017.

[83] T. Barker, Climate Change 2007 : An Assessment of the Intergovernmental Panel on Climate Change, IPCC, 2007. doi:10.1256/004316502320517344.

[84] G. Han, Z. Ma, N. Chen, R. Thomson, A. Slangen, G. Han, et al., Changes in Mean Relative Sea Level around Canada in the Twentieth and Twenty-First Centuries Changes in Mean Relative Sea Level around Canada in the Twentieth and Twenty-First Centuries, Atmosphere-Ocean. 53 (2015) 452–463. doi:10.1080/07055900.2015.1057100.

[85] A.H. Dolan, I.J. Walker, Understanding vulnerability of coastal communities to climate change related risks, J. Coast. Res. SI 39 (2006) 1316–1323.

[86] M.C. Jones, W.W.L. Cheung, Using fuzzy logic to determine the vulnerability of marine species to climate change, (2017). doi:10.1111/gcb.13869.

[87] P.S. Rand, S.G. Hinch, J. Morrison, M.G.G. Foreman, M.J. Macnutt, J.S. Macdonald, et al., Effects of River Discharge , Temperature , and Future Climates on Energetics and Mortality of Adult Migrating Fraser River Sockeye Salmon, Trans. Am. Fish. Soc. (2006) 655–667. doi:10.1577/T05-023.1.

[88] J. Cleary, M. Grinnel, K. Daniel, M. Thompson, J. Boldt, Pacific herring in British Columbia, 2016., in: P.C. Chandler, S.A. King, J. Boldt (Eds.), State Phys. Biol. Sel. Fish. Resour. Pacific Can. Mar. Ecosyst. 2016. Can. Tech. Rep. Fish. Aquat. Sci. 3225., 2016.

[89] C.R. Johnson, S.C. Banks, N.S. Barrett, F. Cazassus, P.K. Dunstan, G.J. Edgar, et al., Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania, J. Exp. Mar. Bio. Ecol. 400 (2011) 17–32. doi:10.1016/j.jembe.2011.02.032.

[90] A. Rahman, S. Worldfish, E.C. Fisheries, A.R. Sunny, A review on effect of global climate change on seaweed and seagrass and seagrass, (2017).

[91] T.B. Suzuki, The state of British Columbia coastal communities in 2015, 2015.

[92] L. V Weatherdon, Y. Ota, M.C. Jones, D.A. Close, W.W.L. Cheung, Projected Scenarios for Coastal First Nations’ Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities, PLoS One. 11 (2016) e0145285. doi:10.1371/journal.pone.0145285.

[93] L.S.L. Teh, W.W.L. Cheung, U.R. Sumaila, Scenarios for investigating the future of Canada’s oceans and marine fisheries under environmental and socioeconomic change, Reg. Environ. Chang. (2016). doi:10.1007/s10113-016-1081-5.

[94] K. Lynn, J. Daigle, J. Hoffman, F. Lake, N. Michelle, D. Ranco, et al., The impacts of climate change on tribal traditional foods, Clim. Change. 120 (2013) 545–556. doi:10.1007/s10584-013-0736-1.

[95] N.J. Muñoz, A.P. Farrell, J.W. Heath, B.D. Neff, Adaptive potential of a Pacific salmon challenged by climate change, Nat. Clim. Chang. 5 (2014) 163–166. doi:10.1038/nclimate2473.

[96] M. Healey, The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management, Can. J. Fish. Aquat. Sci. 68 (2011) 718–737. doi:10.1139/F11-010.

[97] E.G. Martins, S.G. Hinch, D.A. Patterson, M.J. Hague, S.J. Cooke, K.M. Miller, et al., Effects of river temperature and climate warming on stock-specific survival of adult migrating Fraser River sockeye salmon (Oncorhynchus nerka), Glob. Chang. Biol. 17 (2011) 99–114. doi:10.1111/j.1365-2486.2010.02241.x.

[98] L.G. Crozier, A.P. Hendry, P.W. Lawson, T.P. Quinn, N.J. Mantua, J. Battin, et al., Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon, Evol. Appl. 1 (2008) 252–270. doi:10.1111/j.1752-4571.2008.00033.x.

[99] F. Gazeau, L.M. Parker, S. Comeau, J.P. Gattuso, W. a. O’Connor, S. Martin, et al., Impacts of ocean acidification on marine shelled molluscs, Mar. Biol. 160 (2013) 2207–2245. doi:10.1007/s00227-013-2219-3.

[100] J.A. Ekstrom, L. Suatoni, S.R. Cooley, L.H. Pendleton, G.G. Waldbusser, J.E. Cinner, et al., Vulnerability and adaptation of US shellfisheries to ocean acidification, Nat. Clim. Chang. 5 (2015) 207–214. doi:10.1038/nclimate2508.

[101] S. Cooley, H.L. Kite-Powell, S.C. Doney, Ocean Acidification’ s Potential to Alter Global Marine Ecosystem Services, Oceanography. 22 (2009) 172–181.

[102] C. Linnitt, The Strait Of Georgia Is Turning To Acid, New Research Shows, Huffingt. Post. (2014). http://www.huffingtonpost.ca/carol-linnitt/the-strait-of-georgia-turning-to-acid_b_6084864.html (accessed December 11, 2017).

[103] T.B.S.E. Foundation, The State of British Columbia Coastal Communities in 2017, 2017.

[104] S.B. Henderson, V. Wan, T. Kosatsky, Differences in heat-related mortality across four ecological regions with diverse urban, rural, and remote populations in British Columbia, Canada, Health Place. 23 (2013) 48–53.

[105] F.J. Warren, D.S. Lemmen, Synthesis – Canada in a Changing Climate: Sector Perspectives on Impacts and Adaptation, Ottawa, ON, 2014.

[106] C. for I.E. Resources, How climate change uniquely impacts the physical, social, and cultural aspects of First Nations, 2006.

[107] D.S. Abeysirigunawardena, I.J. Walker, Sea level responses to climatic variability and change in northern British Columbia, Atmosphere-Ocean. 46 (2008) 277–296.

[108] P. Withey, Lantz, V. A., T.O. Ochuodho, Economic costs and impacts of climate-induced sea-level rise and storm surge in Canadian coastal provinces: a CGE approach, Appl. Econ. 48 (2016) 59–71.

[109] P.L. Barnard, A.D. Short, M.D. Harley, K.D. Splinter, S. Vitousek, I.L. Turner, et al., Coastal vulnerability across the Pacific dominated by El Nino/Southern Oscillation, Nat. Geosci. 8 (2015) 801–808. doi:10.1038/NGEO2539.

[110] J. Andrey, K. Palko, Introduction, in: K. Palko, D.S. Lemmen (Eds.), Clim. Risks Adapt. Pract. Can. Transp. Sect. 2016, Government of Canada, Ottawa, ON, 2017: pp. 2–10.

[111] V. Savo, C. Morton, D. Lepofsky, Impacts of climate change for coastal fishers and implications for fisheries, Fish Fish. (2017). doi:10.1111/faf.12212.

[112] B. Government, Adaptation & Climate Impacts, (2017). https://www2.gov.bc.ca/gov/content/environment/climate-change/adaptation (accessed December 10, 2017).

[113] C. Flood, H. Land, BC Ministry of Environment Climate Change Adaption Guidelines for Sea Dikes and Coastal Flood Hazard Land Use, (2011).

[114] M. Oppenheimer, C.M. Little, R.M. Cooke, Expert judgement and uncertainty quantification for climate change, Nat. Clim. Chang. 6 (2016) 445–451. doi:10.1038/nclimate2959.

[115] W.W.L. Cheung, M.C. Jones, G. Reygondeau, C.A. Stock, V.W.Y. Lam, T.L. Frölicher, Structural uncertainty in projecting global fisheries catches under climate change, Ecol. Modell. 325 (2016) 57–66. doi:10.1016/j.ecolmodel.2015.12.018.

[116] E.P. Salathé, P.W. Mote, M.W. Wiley, Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the United States pacific northwest, Int. J. Climatol. 27 (2007) 1611–1621. doi:10.1002/joc.1540.

[117] A. Hamann, T. Wang, Potential effects of climate change on ecosystem and tree species distribution in British Columbia., Ecology. 87 (2006) 2773–86. http://www.ncbi.nlm.nih.gov/pubmed/17168022.

[118] MEOPAR., Summary: Maritime Transportation Disruption: An Integrated Assessment for Coastal Community Resilience, (2017).

[119] G.E. Gillespie, T.C. Norgard, E.D. Anderson, D.R. Haggarty, A.C. Phillips, Distribution and Biological Characteristics of European Green Crab , Carcinus maenas , in British Columbia , 2006 – 2013 Canadian Technical Report of Fisheries and Aquatic Sciences 3120, 2015.

[120] C. Clarke Murray, H. Gartner, E.J. Gregr, K. Chan, E. Pakhomov, T.W. Therriault, Spatial distribution of marine invasive species: Environmental, demographic and vector drivers, Divers. Distrib. 20 (2014) 824–836. doi:10.1111/ddi.12215.

[121] B. Government, Preparing for Climate Change: British Columbia’s Adaptation Strategy, (2010).

[122] W.E. Morrison, V. Termini, A Review of Potential Approaches for Managing Marine Fisheries in a Changing Climate, (2016).

[123] D.R. Armitage, R. Plummer, Adaptive Capacity and Environmental Governance, 2010. doi:10.1007/978-3-642-12194-4.

[124] M.G. Reid, C. Hamilton, S.K. Reid, C. Hill, N. Turner, C.R. Picard, et al., Indigenous climate change adaptation planning using a values-focused approach: A case study with the Gitga’at Nation, J. Ethnobiol. 34 (2014) 401–424.

[125] I.M. Picketts, A.T. Werner, T.Q. Murdock, J. Curry, S.J. Déry, D. Dyer, Planning for climate change adaptation: Lessons learned from a community-based workshop, Environ. Sci. Policy. 17 (2012) 82–93. doi:10.1016/j.envsci.2011.12.011.

[126] J. Jackley, L. Gardner, A.F. Djunaedi, A.K. Salomon, Ancient clam gardens, traditional management portfolios, and the resilience of coupled human-ocean systems, Ecol. Soc. 21 (2016) 20. doi:10.5751/ES-08747-210420.

[127] E. Pinkerton, E. Angel, N. Ladell, P. Williams, M. Nicolson, J. Thorkelson, et al., Local and regional strategies for rebuilding fisheries management institutions in coastal British Columbia: What components of comanagement are most critical?, Ecol. Soc. 19 (2014). doi:10.5751/ES-06489-190272.

[128] J.E. Johnson, D.J. Welch, Marine Fisheries Management in a Changing Climate: A Review of Vulnerability and Future Options, Rev. Fish. Sci. 18 (2009) 106–124. doi:10.1080/10641260903434557.

[129] K. Miller, A. Charles, M. Barange, K. Brander, V.F. Gallucci, M.A. Gasalla, et al., Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science, Prog. Oceanogr. 87 (2010) 338–346. doi:10.1016/j.pocean.2010.09.014.

[130] M.L. Pinsky, N.J. Mantua., Emerging adaptation approaches for climate-ready fisheries management, Oceanography. 27 (2014) 17–29.

[131] W.N. Adger, N.W. Arnell, E.L. Tompkins, Successful adaptation to climate change across scales, Glob. Environ. Chang. 15 (2005) 77–86. doi:10.1016/j.gloenvcha.2004.12.005.

[132] M. Pelling, C. High, Understanding adaptation: What can social capital offer assessments of adaptive capacity?, Glob. Environ. Chang. 15 (2005) 308–319. doi:10.1016/j.gloenvcha.2005.02.001.

[133] M. Pelling, C. High, J. Dearing, D. Smith, Shadow spaces for social learning: A relational understanding of adaptive capacity to climate change within organisations, Environ. Plan. A. 40 (2008) 867–884. doi:10.1068/a39148.

[134] J.J. Green, D.A. Gill, A.M. Kleiner, From Vulnerability to Resiliency: Assessing Impacts and Responses to Disaster, South. Rural Sociol. 21 (2006) 89–99.

[135] P.R. Berke, R. Chuenpagdee, K. Juntarashote, S. (2008). Chang, Human-ecological dimensions of disaster resiliency in Thailand: social capital and aid delivery., J. Environ. Plan. Manag. 51 (2008) 303–317. doi:10.1080/09640560701864993.

[136] D.W.A. Murphy, Theorizing climate change, (im)mobility and socio-ecological systems resilience in low-elevation coastal zones, Clim. Dev. (2014) 1–18. doi:http://doi.org/10.1080/17565529.2014.953904.

[137] M. Pelling, What determines vulnerability to floods; a case study in Georgetown, Guyana, Environ. Urban. 9 (1997) 203–226. doi:10.1177/095624789700900116.

[138] S.L. Cutter, L. Barnes, M. Berry, C. Burton, E. Evans, E. Tate, et al., A place-based model for understanding community resilience to natural disasters, Glob. Environ. Chang. 18 (2008) 598–606. doi:10.1016/j.gloenvcha.2008.07.013.

[139] J.R.A. Butler, R.M. Wise, T.D. Skewes, E.L. Bohensky, N. Peterson, W. Suadnya, et al., Integrating Top-Down and Bottom-Up Adaptation Planning to Build Adaptive Capacity: A Structured Learning Approach, Coast. Manag. 43 (2015) 346–364. doi:10.1080/08920753.2015.1046802.

[140] C.K. Whitney, N.J. Bennett, N.C. Ban, E.H. Allison, D. Armitage, J.L. Blythe, et al., Adaptive capacity: From assessment to action in coastal social-ecological systems, Ecol. Soc. 22 (2017). doi:10.5751/ES-09325-220222.

[141] J. Horne, WSANEC: Emerging Land or Emerging People., Arbutus Rev. 3 (2012) 6–19. http://journals.uvic.ca/index.php/arbutus/article/view/11639.

[142] R.J.T. Klein, R.J. Nicholls, F. Thomalla, Resilience to natural hazards: How useful is this concept?, Glob. Environ. Chang. Part B Environ. Hazards. 5 (2003) 1–11. doi:http://doi.org/10.1016/j.hazards.2004.02.001.

[143] N.C. Ban, H.M. Alidina, J.A. Ardron, Cumulative impact mapping: Advances, relevance and limitations to marine management and conservation, using Canada’s Pacific waters as a case study, Mar. Policy. 34 (2010) 876–886. doi:10.1016/j.marpol.2010.01.010.

[144] B.S. Halpern, K.L. McLeod, A.A. Rosenberg, L.B. Crowder, Managing for cumulative impacts in ecosystem-based management through ocean zoning, Ocean Coast. Manag. 51 (2008) 203–211. doi:10.1016/j.ocecoaman.2007.08.002.

[145] C. Clarke, S. Agbayani, N.C. Ban, Cumulative effects of planned industrial development and climate change on marine ecosystems, Glob. Ecol. Conserv. 4 (2015) 110–116. doi:10.1016/j.gecco.2015.06.003.

[146] C. Clarke, S. Agbayani, H.M. Alidina, N.C. Ban, Advancing marine cumulative effects mapping : An update in Canada’ s Pacific waters, Mar. Policy. 58 (2015) 71–77. doi:10.1016/j.marpol.2015.04.003.

[147] N.E. Heller, E.S. Zavaleta, Biodiversity management in the face of climate change: A review of 22 years of recommendations, Biol. Conserv. 142 (2008) 14–32. doi:10.1016/j.biocon.2008.10.006.

[148] K.R. Jones, J.E.M. Watson, H.P. Possingham, C.J. Klein, Incorporating climate change into spatial conservation prioritisation: A review, Biol. Conserv. 194 (2016) 121–130. doi:10.1016/j.biocon.2015.12.008.

[149] M.R. Clark, F. Althaus, T.A. Schlacher, A. Williams, D.A. Bowden, A.A. Rowden, The evolving and increasing need for climate change research on the oceans, ICES J. Mar. Sci. 73 (2016) 1267–1271.

[150] S.S. Mamauag, P.M. Aliño, R.J.S. Martinez, R.N. Muallil, M.V.A. Doctor, E.C. Dizon, et al., A framework for vulnerability assessment of coastal fisheries ecosystems to climate change—Tool for understanding resilience of fisheries (VA–TURF), Fish. Res. 147 (2013) 381–393. doi:10.1016/j.fishres.2013.07.007.

[151] C.M. Roberts, B.C. O’Leary, D.J. McCauley, P.M. Cury, C.M. Duarte, J. Lubchenco, et al., Marine reserves can mitigate and promote adaptation to climate change, Proc. Natl. Acad. Sci. 114 (2017) 201701262. doi:10.1073/pnas.1701262114.

[152] E. McLeod, R. Salm, A. Green, J. Almany, Designing marine protected area networks to address the impacts of climate change, Front. Ecol. Environ. 7 (2009) 362–370. doi:10.1890/070211.

[153] CEC, North American Marine Protected Area Rapid Vulnerability Assessment Tool, Montreal, Canada, 2017.

[154] L.V. Weatherdon, Scenarios for coastal First Nations’ fisheries under climate change: impacts, resilience and adaptation potential, University of British Columbia, 2014.

[155] S.D. Wesche, Responding to change in a northern aboriginal community (Fort Resolution, NWT, Canada): Linking social and ecological perspectives., 2011. http://ezproxy.net.ucf.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2011-99030-587&site=ehost-live.

[156] A.L. Wood, J.R. a Butler, M. Sheaves, J. Wani, Sport fisheries: Opportunities and challenges for diversifying coastal livelihoods in the Pacific, Mar. Policy. 42 (2013) 305–314. doi:10.1016/j.marpol.2013.03.005.

[157] M. Nursey-Bray, B. Blackwell, B. Brooks, M.L. Campbell, L. Goldsworthy, H. Pateman, et al., Vulnerabilities and adaptation of ports to climate change, J. Environ. Plan. Manag. 56 (2013) 1021–1045. doi:10.1080/09640568.2012.716363.

[158] M. Andrachuk, B. Smit, Community-based vulnerability assessment of Tuktoyaktuk, NWT, Canada to environmental and socio-economic changes, Reg. Environ. Chang. 12 (2012) 867–885. doi:10.1007/s10113-012-0299-0.

[159] N. Chen, P. Graham, Climate Change as a Survival Strategy: Soft Infrastructure for Urban Resilience and Adaptive Capacity in Australia’s Coastal Zones, in: Resilient Cities, 2011: pp. 111–121. doi:10.1007/978-94-007-0785-6.

[160] R.J. Beamish, Impacts of Climate and Climate Change on the Key Species in the Fisheries in the North Pacific, PICES. Sci. Rep. (2008) 246.

[161] S.M. Maxwell, E.L. Hazen, R.L. Lewison, D.C. Dunn, H. Bailey, S.J. Bograd, et al., Dynamic ocean management: Defining and conceptualizing real-time management of the ocean, Mar. Policy. 58 (2015) 42–50. doi:10.1016/j.marpol.2015.03.014.

[162] M. Mills, R. Weeks, R.L. Pressey, M.G. Gleason, R.-L. Eisma-Osorio, A.T. Lombard, et al., Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas, Biol. Conserv. 181 (2015) 54–63. doi:10.1016/j.biocon.2014.10.028.

Share our research